Sabtu, 04 November 2017

Tugas Terstruktur 5 dan 6

1. Jelaskan mengapa reaksi bersaing antara subtitusi dan eliminasi itu bisa terjadi?

Jawaban : 


Dalam kimia organik, banyak reaksi yang dapat terjadi yang melibatkan ikatan kovalen di antara atom karbon dan heteroatom lainnya seperti oksigen, nitrogen, atau atom-atom halogen lainnya. Beberapa reaksi yang lebih spesifik akan dijelaskan di bawah ini.

Substitusi

Dalam reaksi substitusi, sebuah gugus fungsi di dalam suatu senyawa kimia digantikan oleh gugus fungsi lainnya.[29] Reaksi ini dapat dibedakan lagi menjadi beberapa subtipe yaitu nukleofilik, substitusi elektrofilik, atau substitusi radikal.
SN1 mechanism
SN2 mechanism
Pada tipe yang pertama, nukleofil, atom atau molekul yang memiliki kelebihan elektron sehingga bermuatan negatif, akan menggantikan atom lainnya atau bagian lainnya dari molekul "substrat". Pasangan elektron nukleofil akan bersatu dengan substrat membentuk ikatan baru, sedangkan gugus lepas akan lepas bersamaan dengan sebuah pasangan elektron. Nukleofil sendiri dapat bermuatan netral atau positif, sedangkan substrat biasanya bermuatan positif atau netral. Contoh nukleofil adalah ion hidroksida, alkoksida, amina, dan halida. Reaksi semacam ini biasanya ditemukan pada hidrokarbon alifatik dan jarang ditemukan pada hidrokarbon aromatik. Hidrokarbon aromatik memiliki rapatan elektron yang tingi dan hanya bisa melangsungkan substitusi aromatik nukleofilik hanya dengan gugus penarik elektron yang sangat kuat. Substitusi nukleofilik dapat berlangsung melalui 2 mekanisme, Reaksi SN1 dan SN2. Menurut namanya, S singkatan dari substitusi, N singkatan dai nukleofilik, dan, dan angka menunjukkan ordo kinetik reaksi, unimolekuler atau bimolekuler.[30]
3 tahap dalam Reaksi SN2. Nukleofil berwarna hijau dan gugus lepas berwarna merah
Reaksi SN2 menyebabkan inversi stereo (inversi Walden)
Reaksi SN1 berlangsung dalam 2 tahap. Tahap pertama, gugus lepas akan lepas dan membentuk karbokation. Tahap ini akan diikuti reaksi yang sangat cepat dengan nukleofil.[31]
Dalam mekanisme SN2, nukleofil akan membentuk tahap transisi dengan molekul yang lepas saja yang terlekang. Kedua mekanisme ini berbeda pada hasil stereokimianya. Reaksi SN1 menghasilkan adisi non-stereospesifik dan tidak menghasilkan pusat chiral, melainkan dalam bentuk isomer geometri (cis/trans). Kebalikannya, inversi Warden-lah yang diamati pada mekanisme SN2.[32]
Substitusi elektrofilik merupakan kebalikan dari substitusi nukleofilik di mana atom atau molekul yang melepas, atau elektrofilnya, mempunyai kerapatan elektron yang rendah sehingga bermuatan positif. Biasanya elektrofil ini adalah atom karbon dari gugus karbonil, karbokation atau sulfur atau kation nitronium. Reaksi ini berlangsung pada hidrokarbon aromatik saja, sehingga disebut substitusi aromatik elektrofilik. Serangan elektrofil akan menciptakan kompleks yang disebut sebagai σ-compleks, sebuah fase transisi di mana sistem aromatiknya hilang. Lalu, gugus lepas (biasanya proton), akan terpisah dan sifat kearomatikannya kembali. Alternatif lain untuk substitusi aromatik adalah substitusi alifatik elektrofilik. Substitusi ini mirip dengan substitusi aromatik elektrofilik dan juga mempunyai 2 tipe utama yaitu SE1 dan SE2[33]

Mekanisme dari substitusi aromatik elektrofilik

Adisi dan eliminasi

Adisi dan pasangannya eliminasi merupakan reaksi yang mengubah jumlah substituen dalam atom karbon, dan membentuk ikatan kovalen. Ikatan ganda dan tiga dapat dihasilkan dengan mengeliminasi gugus lepas yang cocok. Seperti substitusi nukleofilik, ada beberapa mekanisme reaksi yang mungkin terjadi. Dalam mekanisme E1, gugus lepas terlebih dahulu melepas dan membentuk karbokation. Selanjutnya, pembentukan ikatan ganda terjadi melalui eliminasi proton (deprotonasi). Dalam mekanisme E1cb, urutan pelepasan terbalik: proton dieliminasi terlebih dahulu. Dalam mekanisme ini keterlibatan suatu basa harus ada.[34] Reaksi dalam eliminasi E1 maupun E1cb selalu bersaing dengan substitusi SN1 karena memiliki kondisi reaksi kondisi yang sama.[35]
Eliminasi E1
Eliminasi E1
Eliminasi E1

eliminasi E1cb

Eliminasi E2
Mekanisme E2 juga memerlukan basa. Akan tetapi, pergantian posisi basa dan eliminasi gugus lepas berlangsung secara serentak dan tidak menghasilkan zat antara ionik. Berbeda dengan eliminasi E1, konfigurasi stereokimia yang berbeda dapat dihasilkan dalam reaksi yang memiliki mekanisme E2 karena basa akan lebih memfavoritkan eleminasi proton yang berada pada posisi-anti terhadap gugus lepas. Oleh karena kondisi dan reagen reaksi yang mirip, eliminasi E2 selalu bersaing dengan substitusi SN2.[36]

Adisi elektrofilik hidrogen bromida
Kebalikan dari reaksi eliminasi adalah reaksi adisi. Pada reaksi adisi, ikatan rangkap dua atau rangkap tiga diubah menjadi ikatan rangkap tunggal. Mirip dengan reaksi substitusi, ada beberapa tipe dari adisi yang dibedakan dari partikel yang mengadisi. Contohnya, pada adisi elektrofilik hidrogen bromida, sebuah elektrofil (proton) akan mengganti ikatan rangkap ganda dan membentuk karbokation, lalu kemudian bereaksi dengan nukleofil (bromin). Karbokation dapat terbentuk di salah satu ikatan rangkap tergantung dari gugus yang melekat di akhir. Konfigurasi yang lebih tepat dapat diprediksikan dengan aturan Markovnikov.[37] Aturan Markovnikov mengatakan: "Pada adisi heterolitik dari sebuuah molekul polar pada alkena atau alkuna, atom yang mempunyai keelektronegatifan yang besar, maka akan terikat pada atom karbon yang mengikat atom hidrogen yang lebih sedikit."[38]

Reaksi kimia organik lainnya


Penataan ulang dari 3-metil-1,5-heksadiena
Mekanisme dari reaksi Diels-Alder
Orbital overlap in a Diels-Alder reaction
Pada reaksi penataan ulang, kerangka karbon dari sebuah molekul disusun ulang sehingga membentuk isomer struktur dari molekul aslinya. Reaksi ini termasuk dengan reaksi sigmatropik seperti penataan ulang Wagner-Meerwein, di mana gugus hidrogen, alkil, atau aril berpindah-pindah tempat dari suatu atom karbon ke atom karbon lainnya. Kebanyakan reaksi penataan ulang adalah pemutusan dan pembentukan ikatan karbon-karbon baru. Contoh lain dari reaksi ini adalah penataan ulang cope.


Eliminasi adalah jalur alternatif ke substitusi. Berlawanan dengan reaksi adisi dan menghasilkan alkena. Eliminasi dapat berkompetisi dengan substitusi dan menurunkan jumlah produk, khususnya untuk SN1.
Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.
Halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan ) terbentuk di antara karbon-karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.
Seringkali reaksi substitusi dan eliminasi terjadi secara bersamaan pada pasangan pereaksi nukleofil dan substrat yang sama. Reaksi mana yang dominan, bergantung pada kekuatan nukleofil, struktur substrat, dan kondisi reaksi. Seperti halnya dengan reaksi substitusi, reaksi elimanasi juga mempunyai dua mekanisme, yaitu mekanisme E2 dan E1.
Aturan Zaitsev untuk reaksi Eliminasi
Pada eliminasi HX dari alkil halida, produk alkena yang lebih tersubstitusi adalah produk yang dominan.
Mekanisme E2
Reaksi adalah bimolekul, V tergantung pada konsentrasi RX dan B
V = k[RX][B]
\ Tahap penentu laju reaksi melibatkan konsentrasi B
reactivity:         RI > RBr > RCl > RF
\ Tahap penentu laju reaksi melibatkan pemutusan ikatan R—X
(Reaksi tidak tergantung pada jenis RX apakah 1º, 2º, atau 3º)
Reaksi E2 adalah proses satu tahap. Nukleofil bertindak sebagai basa dan mengambil proton (hidrogen) dari atom karbon yang bersebelahan dengan karbon pembawa gugus pergi. Pada waktu yang bersamaan, gugus pergi terlepas dan ikatan rangkap dua terbentuk.
Konfigurasi yang terbaik untuk reaksi E2 adalah konfigurasi dimana hidrogen yang akan tereliminasi dalam posisi anti dengan gugus pergi. Alasannya ialah bahwa pada posisi tersebut orbital ikatan C-H dan C-X tersusun sempurna yang memudahkan pertumpang tindihan orbital dalam pembentukan ikatan  baru.
Mekanisme E1
Mekanisme E1 mempunyai tahap awal yang sama dengan mekanisme SN1. Tahap lambat atau penentuan ialah tahap ionisasi dari substrat yang menghasilkan ion karbonium.
 
Kemudian, ada dua kemungkinan reaksi untuk ion karbonium. Ion bisa bergabung dengan nukleofil (proses SN1) atau atom karbon bersebelahan dengan ion karbonium melepaskan protonnya, sebagaimana ditunjukkan dengan panah lengkung, dan memebentuk alkena (proses E1).
 
Perbandingan E1 dan E2
·          Basa kuat dibutuhkan untuk E2 tapi tidak untuk E1
·          E2 stereospesifik, E1 tidak
·          E1 menghasilkan orientasi Zaitse
PERSAINGAN SUBSTITUSI DAN ELIMINASI
Ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan
dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat
dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan
dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika
dibandingkan dengan SN1 dan E1.
            Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana.
Kedua proses dapat terjadi.
Hasilnya adalah campuran 1-butanol dan 1-butena. Reaksi SN2 cenderung terjadi jika digunakan pelarut yang lebih polar (air), konsentrasi basa yang sedang, dan suhu sedang. Reaksi E2, cenderung terjadi jika digunakan pelarut yang kurang polar, konsentrasi basa yang tinggi, dan suhu tinggi.
Seandainya kita mengganti alkil halida primer menjadi tersier, reaksi substitusi akan terhambat (ingat, urutan reaktivitas untuk reaktivitas SN2 adalah 1o >2o >> 3o). Tetapi, reaksi eliminasi akan cenderung terjadi karena hasilnya adalah alkena yang lebih tersubtitusi. Pada kenyataannya, dengan t-butil bromida, hanya proses E2 yang terjadi.
Jadi, bagaimana kita mengubah butil bromida tersier menjadi alkoholnya? Kita tidak menggunakan ion hidroksida, melainkan air. Air merupakan basa yang lebih lemah daripada ion hidroksida, sehingga reaksi E2 ditekan. Air juga merupakan pelarut polar, yang menguntungkan mekanisme ionisasi. Dalam hal ini, E1 tidak dapat dihindari sebab persaingan antara E1 dan SN1 cukup berat. Hasil utama adalah hasil subtitusi (80%), tetapi eliminasi masih terjadi (20%).
 Ringkasannya, halida tersier bereaksi dengan basa kuat dalam pelarut nonpolar memberikan eliminasi (E2), bukan subtitusi. Dengan basa lemah dan nukleofil lemah, dan dalam pelarut polar, halida tersier memberikan hasil utama subtitusi (SN1), tetapi sedikit eliminasi (E1) juga terjadi. Halida primer bereaksi hanya melalui mekanisme-mekanisme SN2 dan E2, karena mereka tidak terionisasi menjadi ion karbonium. Halida sekunder menempati kedudukan pertengahan, dan mekanisme yang terjadi sangat dipengaruhi oleh keadaan reaksi.
CONTOH-CONTOH REAKSI SUBSTITUSI NUKLEOFILIK DAN ELIMINASI
Nukleofil dapat digolongkan menurut jenis atom yang membentuk ikatan kovalen. Nukleofil yang umum adalah nukleofil oksigen, nitrogen, belerang, halogen, atau karbon. Berikut ini kita akan melihat beberapa contoh reaksi yang melibatkan reaksi nukleofil-nukleofil tersebut dengan alkil halida.
 

ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika dibandingkan dengan SN1 dan E1. Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana. Kedua proses dapat terjadi.
 
Hasilnya adalah campuran 1-butanol dan 1-butena. Reaksi SN2 cenderung terjadi jika digunakan pelarut yang lebih polar (air), konsentrasi basa yang sedang, dan suhu sedang. Reaksi E2, cenderung terjadi jika digunakan pelarut yang kurang polar, konsentrasi basa yang tinggi, dan suhu tinggi. Seandainya kita mengganti alkil halida primer menjadi tersier, reaksi substitusi akan terhambat (ingat, urutan reaktivitas untuk reaktivitas SN2 adalah 1o >2o >> 3o). Tetapi, reaksi eliminasi akan cenderung terjadi karena hasilnya adalah alkena yang lebih tersubtitusi. Pada kenyataannya, dengan t-butil bromida, hanya proses E2 yang terjadi. 


2. Suatu alkohol dapat diubah menjadi eter atau sebaliknya.  Jelaskan mengapa sifat kedua senyawa tersebut berbeda kontras dan berikan contoh-contoh nya! 

 Jawaban :

Myrstad dalam Jauhar (2007) menjelaskan bahwa berdasarkan penelitian-penelitian yang telah dilakukan, diketahui bahwa hidrokarbon seperti golongan alkohol dan keton dapat diubah menjadi eter dengan cara mengkonversi alkohol sehingga menjadi eter. penelitian ini menggunakan zeolit atau logam transisi yang diembankan kedalam pengemban katalis. 
Alkohol dan eter disebut pasangan isomer fungsi , karena kedua senyawa tersebut memiliki rumus molekul sama tetapi gugus fungsinya berbeda . Karena gugus fungsi alkohol dan eter berbeda maka sifat-sifat alkohol dan eter berbeda sekali . Perbedaan alcohol dengan eter sebagai berikut :
No Alkohol Eter
1 Zat cair jernih ,mudah larut dalam air . Zat cair jernih , sukar larut dalam air .
2 Titik didih alcohol lebih tinggi
( bila Mr senyawanya sama ) Titik didih eter lebih rendah
( bila Mr senyawanya sama )
3 Akohol bereaksi dengan logam aktif ( Na atau K ) membebaskan gas H2 Eter tidak bereaksi dengan logam aktif ( Na atau K )
4 Akohol bereaksi dengan PCl5 membebaskan uap HCl Eter bereaksi dengan PCl5 tetapi tidak membebaskan uap HCl

Untuk lebih jelasnya pemahaman kita tentang alkohol dan eter marilah kita pelajari kedua senyawa tersebut .

A . ALKOHOL
1. Macam Senyawa Alkohol :
Berdasarkan banyaknya gugus ─ OH senyawa alkohol dikelompokkan menjadi 2 :
a. Monoalkohol yaitu jika senyawa alokohol tersebut hanya terdapat satu gugus
─ OH .
Contoh : Metanol ( CH3─ OH )
Etanol ( C2H5─ OH )
Propanol (C3H7─ OH )
b. Polialkohol yaitu jika senyawa alokohol tersebut terdapat gugus ─ OH jumlahnya lebih dari satu .
Contoh : 1. Glikol CH2─ OH Glikol merupakan cairan digunakan untuk
│ anti beku pada air radiator mobil .
CH2─ OH

2. Gliserol
CH2─ OH

CH─ OH

CH2─ OH
Gliserol banyak manfaatnya dalam hidup kita sehari-hari misalnya digunakan untuk bahan pembuatan pasta gigi sehingga berasa manis, untuk sintesis lemak atau minyak dan untuk bahan peledak ( TNG = Trinitrogliserol ) dan lain-lain .
Berdasarkan letaknya gugus ─ OH alkohol monovalen dibedakan menjadi 3 yaitu :
a. alkohol primer , yaitu alkohol dimana letaknya gugus ─ OH pada atom karbon primer .
Contoh : 1- propanol = CH3─ CH2─CH2─ OH
etanol = CH3─ CH2─ OH

b. alkohol sekunder , yaitu alkohol dimana letaknya gugus ─ OH pada atom karbon sekunder .
Contoh : 2- propanol = CH3─ CH─CH3

OH
2-butanol = CH3─ CH─CH2─CH3

OH
c. alkohol tersier , yaitu alkohol dimana letaknya gugus ─ OH pada atom karbon tersier .


Contoh :
CH3

a. 2-metil-2-butanol = CH3─ C ─CH2─CH3

OH

CH3

b. 2-metil-2-propanol = CH3─ C ─CH3

OH
2. Tatanama Alkohol .
Aturan memberi nama senyawa alkohol dapat mengikuti cara IUPAC atau TRIVIAL sebagai berikut :

Struktur Senyawa Nama IUPAC caranya :
( akhiran a pada nama alkananya diganti ol ) Nama TRIVIAL caranya :
( nama alkilnya + kata alkohol )

1. CH3─ OH

Metanol
Metil alkohol

2. CH3─ CH2─ OH
Etanol
Etil alkohol

3. CH3─ CH2 ─CH2─ OH

1- propanol
Propil alkohol

4. CH3─ CH ─CH3

OH

2-propanol

Sekunder propil alkohol

19 komentar:

  1. Saya akan mencoba menambahkan jawaban dari soal nomor 1, Reaksi Substitusi
    Ketika atom C pada alkil berikatan dengan gugus halogen yang sangat elektronegatif, ikatan yang terjadi bersifat polar. Elektron yang dipakai bersama lebih tertarik ke arah halogen dibandingkan atom C sehingga C memiliki muatan parsial positif.
    Reaksi eliminasi alkil halida dapat terjadi jika direaksikan dengan suatu basa kuat. Akibatnya adalah molekul alkil halida kehilangan satu atom H dan halidanya, namun tidak digantikan oleh gugus penyerang. Oleh karena yang dibuang adalah H dan X(halida), reaksi eliminasi halida sering juga disebut reaksi dehidrohalogenasi (reaksi penghilangan hidrogen dan halogen).

    Produk eliminasi alkil halida oleh basa kuat adalah alkena.

    Contoh :
    CH3 – CH – CH – CH3 + NaOH ==> CH3 – CH = CH – CH3 + H2O + NaBr

    BalasHapus
    Balasan
    1. Terima kasih kepada indah atas tambahan jawabannya

      Hapus
  2. Data Akan mencoba menambahkan sedikit alkena kurang stabil karena memiliki tegangan sterik di antara kedua substituennya yang berposisi sama. Hal ini dapat dilihat juga dari perhitungan panas pembakaran yang diperlakukan dalam asam kuat. Cara lain untuk menentukan kestabilan relatif suatu alkena adalah dengan mereaksikan alkena dengan gas H2 menggunakan katalis seperti palladium atau platinum.
    Alkena akan lebih stabil dengan peningkatan jumlah substituennya. Hal ini karena dengan peningkatan jumlah substituen pada alkena akan menurunkan ΔH0 hidrogenasi.
    nah sedangkan alkana lebih stabil karena tidak ada halangan histerik nya sehingga mudah stabil

    BalasHapus
    Balasan
    1. Terima kasih kepada Mutiara atas tambahan jawabannya meskipun saya agak kurang mengerti dengan maksud anda mungkin saya akan memahaminya lagi atau anda bisa menjelaskan lebih jelas ke saya. atau mungkin komen di bawah akan membantu.

      Hapus
  3. Data Akan mencoba menambahkan sedikit alkena kurang stabil karena memiliki tegangan sterik di antara kedua substituennya yang berposisi sama. Hal ini dapat dilihat juga dari perhitungan panas pembakaran yang diperlakukan dalam asam kuat. Cara lain untuk menentukan kestabilan relatif suatu alkena adalah dengan mereaksikan alkena dengan gas H2 menggunakan katalis seperti palladium atau platinum.
    Alkena akan lebih stabil dengan peningkatan jumlah substituennya. Hal ini karena dengan peningkatan jumlah substituen pada alkena akan menurunkan ΔH0 hidrogenasi.
    nah sedangkan alkana lebih stabil karena tidak ada halangan histerik nya sehingga mudah stabil

    BalasHapus
  4. Saya ingin menambahkan sedikit jawaban no 2 tentang kegunaan dan dampak eter
    Senyawa dietil eter biasa digunakan sebagai zat anestetik (pemati rasa atau obat bius) yang diberikan melalaui pernafasan namun penggunaan dietil eter dapat menyebabkan iritasi saluran pernafasan dan merangsang sekresi lendir. Selain itu eter juga digunakan sebagai pelarut non polar untuk melarutkan senyawa non polar pula, seperti lemak, lilin dan minyak. Eter dapat menyebabkan mual dan muntah selama waktu
    pemulihan. Karena dampak negatif ini, eter sudah jarang dipakai di negara-negara maju.

    BalasHapus
    Balasan
    1. Terima kasih kepada Sri atas tambahan jawabannya.

      Hapus
  5. saya akan mencoba menambahkan dari pertanyaan yang kedua
    Alkohol dan eter disebut pasangan isomer fungsi , karena kedua senyawa tersebut memiliki rumus molekul sama tetapi gugus fungsinya berbeda . Karena gugus fungsi alkohol dan eter berbeda maka sifat-sifat alkohol dan eter berbeda sekali . Perbedaan alcohol dengan eter sebagai berikut :
    No Alkohol Eter
    1.Zat cair jernih ,mudah larut dalam air . Zat cair jernih , sukar larut dalam air .
    2.Titik didih alkohol lebih tinggi
    ( bila Mr senyawanya sama ) Titik didih eter lebih rendah
    ( bila Mr senyawanya sama )
    3.Alkohol bereaksi dengan logam aktif ( Na atau K ) membebaskan gas H2 Eter tidak bereaksi dengan logam aktif ( Na atau K )
    4.Alkohol bereaksi dengan PCl5 membebaskan uap HCl Eter bereaksi dengan PCl5 tetapi tidak membebaskan uap HCl

    BalasHapus
    Balasan
    1. Terima kasih kepada Dame atas tambahan jawabannya, tapi ini sepertinya sudah saya sebutkan ..

      Hapus
  6. Baiklah saya akan menambahkan sedikit pertanyaan no. 1 Pada kondisi apa terjadi reaksi bersaing antara substitusi dan eliminasi pada substrat yang sekunder?
    Jawab : Substrat sekunder akan terbentuk reaksi substitusi dan eliminasi jika jumlah relative dari kedua produk tersebut tergantung pada kekuatan basa dan keruahan nukleofil/basa.makin kuat dan meruah basa maka dapat terbentuk nya eliminasi.dan sebalik nya makin lemah basa maka terbentuk substitusi contoh nya: asam asetat pka=4,76 merupakan asam yg lebih kuat dari etanol pka=15,9
    maka dapat disimpulkan asam asetat merupakan basa lemah maka akan terjadi reaksi substitusi dan sebalik nya etanol merupakan basa kuat dan terjadi eliminasi.
    Reaksi SN dan reaksi E sering saling berkompetisi. Penjelasan Bagian reaktif dari suatu nukleofil atau basa adalah pasangan elektron bebas. Dengan demikian, semua nukleofil g, adalah basa yang potensial, dan semua basa adalah nukleofil yang potensial.
    SN2 vs E2Reaksi E2 terbantu oleh pemakaian basa kuat (nukleofil kuat) pada konsentrasi yang tinggi.

    Balas

    BalasHapus
    Balasan
    1. Terima kasih kepada Yulisa atas tambahan jawabannya. penjelasannya cukup jelas .

      Hapus
  7. Saya akan menambahkan soal no. 1
    Ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan
    dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat
    dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika
    dibandingkan dengan SN1 dan E1.
    Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana.
    Kedua proses dapat terjadi.

    Hasilnya adalah campuran 1-butanol dan 1-butena. Reaksi SN2 cenderung terjadi jika digunakan pelarut yang lebih polar (air), konsentrasi basa yang sedang, dan suhu sedang. Reaksi E2, cenderung terjadi jika digunakan pelarut yang kurang polar, konsentrasi basa yang tinggi, dan suhu tinggi.
    Seandainya kita mengganti alkil halida primer menjadi tersier, reaksi substitusi akan terhambat (ingat, urutan reaktivitas untuk reaktivitas SN2 adalah 1o >2o >> 3o). Tetapi, reaksi eliminasi akan cenderung terjadi karena hasilnya adalah alkena yang lebih tersubtitusi. Pada kenyataannya, dengan t-butil bromida, hanya proses E2 yang terjadi.



    Jadi, bagaimana kita mengubah butil bromida tersier menjadi alkoholnya? Kita tidak menggunakan ion hidroksida, melainkan air. Air merupakan basa yang lebih lemah daripada ion hidroksida, sehingga reaksi E2 ditekan. Air juga merupakan pelarut polar, yang menguntungkan mekanisme ionisasi. Dalam hal ini, E1 tidak dapat dihindari sebab persaingan antara E1 dan SN1 cukup berat. Hasil utama adalah hasil subtitusi (80%), tetapi eliminasi masih terjadi (20%).

    Ringkasannya, halida tersier bereaksi dengan basa kuat dalam pelarut nonpolar memberikan eliminasi (E2), bukan subtitusi. Dengan basa lemah dan nukleofil lemah, dan dalam pelarut polar, halida tersier memberikan hasil utama subtitusi (SN1), tetapi sedikit eliminasi (E1) juga terjadi. Halida primer bereaksi hanya melalui mekanisme-mekanisme SN2 dan E2, karena mereka tidak terionisasi menjadi ion karbonium. Halida sekunder menempati kedudukan pertengahan, dan mekanisme yang terjadi sangat dipengaruhi oleh keadaan reaksi.

    BalasHapus
    Balasan
    1. Wah penjelasan yang panjang dengan analisis yang cukup bisa dipahami, terima kasih kepada shintari atas tambahan jawabannya

      Hapus
  8. Senyawa-senyawa alkohol dengan jumlah atom karbon yang sama dapat mengalami isomer. Pada alkohol terjadi isomer posisi, yaitu alkohol dengan jumlah atom karbon sama tetapi letak gugus –OH dalam struktur berbeda. Misalnya alkohol dengan rumus molekul C3H8O dapat ditulis dengan dua rumus struktur.


    Kelarutan alkohol dalam air dipengaruhi oleh jumlah atom karbon yang terdapat pada alkohol. Alkohol dengan 1-3 atom karbon meruapakan cairan tak berwarna dan dapat larut dalam air dengan segala perbandingan, 4-5 atom karbon sedikit larut dalam air sedangkan alkohol dengan jumlah atom karbon > 6 tidak larut dalam air.
    Berdasarkan struktur yang dimiliki, alkohol merupakan gabungan antara alkana atau gugus R dan air. Gugus R bersifat nonpolar atau lipofilik, gugus –OH bersifat polar atau hidrofobik, ketika alkohol dengan jumlah atom karbon sedikit ketika dilarutkan dalam air maka gugus –OH dapat membentuk ikatan hidrogen dengan molekul air. Namun ketika jumlah atom karbon makin banyak maka sifat nonpolar dari gugus R atau alkana lebih dominan sehingga kelarutan dalam air berkurang bahkan tidak larut ketika jumlah atom karbon makin banyak.
    Makin tinggi berat molekul maka makin tinggi pula titik didih dan viskositasnya. Titik didih alkohol lebih tinggi dari alkana yang berat molekulnya hampir sama karena terbentuk ikatan hidrogen dengan sesama molekul alkohol. Pada alkana tidak terbentuk ikatan hidrogen antar sesama molekul.
    Titik didih alkohol titik didh alkohol primer > alkohol sekunder > tersier. Pada alkohol-alkohol bercabang memiliki titik didih lebih rendah dari alkohol dengan dengan rantai lurus. Dengan ketentuan memiliki berat molekul yang hampir sama atau dengan jumlah atom karbon sama. Hal ini disebabkaa alkohol-alkohol bercabang bentuk molekulnya menyerupai bola.

    BalasHapus
    Balasan
    1. Terima kasih kepada Elva atas tambahan jawabannya

      Hapus
  9. Assalamualaikum Persaingan substitusi dan eliminasi dapat ditinjau reaksi antara alkil halida dengan kalium hidroksida yang dilarutkan dalam metil alkohol. Nukleofilnya adalah ion hidroksida, OH-, yaitu nukleofil kuat dan sekaligus adalah basa kuat. Pelarut alkohol kurang polar jika dibandingkan dengan air. Keadaan-keadaan ini menguntungkan proses-proses SN2 dan E2 jika dibandingkan dengan SN1 dan E1. Misalnya, gugus alkil pada alkil halida adalah primer, yaitu 1-bromobutana. Kedua proses dapat terjadi.

    BalasHapus
    Balasan
    1. Waalaikum salam, terima kasih kepada Heni atas tambahan jawabannya. Apakah saya boleh tahu literatur yang anda gunakan? karena sepertinya yang anda beri tahu hanya kesimpulan maka saya akan membacanya sendiri untuk lebih lanjut.

      Hapus
  10. Saya akan menambahkan jawaban.
    Eliminasi adalah jalur alternatif ke substitusi. Berlawanan dengan reaksi adisi dan menghasilkan alkena. Eliminasi dapat berkompetisi dengan substitusi dan menurunkan jumlah produk, khususnya untuk SN1.

    Jika alkil halida mempunyai atom hidrogennya pada atom karbon yang bersebelahan dengan karbon pembawa halogen akan bereaksi dengan nukleofil, maka terdapat dua kemungkinan reaksi yang bersaing, yaitu substitusi dan eliminasi.

    Halogen X dan hidrogen dari atom karbon yang bersebelahan dieliminasi dan ikatan baru (ikatan ) terbentuk di antara karbon-karbon yang pada mulanya membawa X dan H. Proses eliminasi adalah cara umum yang digunakan dalam pembuatan senyawa-senyawa yang mengandung ikatan rangkap.
    Seringkali reaksi substitusi dan eliminasi terjadi secara bersamaan pada pasangan pereaksi nukleofil dan substrat yang sama. Reaksi mana yang dominan, bergantung pada kekuatan nukleofil, struktur substrat, dan kondisi reaksi. Seperti halnya dengan reaksi substitusi, reaksi elimanasi juga mempunyai dua mekanisme, yaitu mekanisme E2 dan E1.

    BalasHapus
    Balasan
    1. Terima kasih kepada Ika atas tambahan jawabannya

      Hapus